The Ten V's of Big Data

(Understanding Data Risks)

Richard Frederick, PMP (rfrederick.pmp@gmail.com; 214-755-7035 talk or text; www.linkedin.com/in/rfrederick)

Requirements Development Management (RDM) for

Business DataAnalytics

(The Language of Data)

Richard Frederick, PMP (rfrederick.pmp@gmail.com; 214-755-7035 talk or text; www.linkedin.com/in/rfrederick)

Requirements Agenda

Business Data Analytics "The Language of Data"

01-FOUNDATION

- LAB-Introductions (Name, Job Title, Objectives)
- Dashboards and Robots (Data Mining & Machine Learning)
- Requirements and Testing (Four Quadrants)
- What are Structured Language Requirements? (Structured English and Structured Query Language)
- Why Should You Care? (Primary Source of Project Problems)
- How Do They Work? (Discreet Intellectual Property Inventory)
- Types of Requirements (Product, Project, DATA)
- Natural Language Processing (Morphology, Semantics, Syntax and Linguistics)
- OMG-SBVR (Semantics of Business Vocabulary & Rules)
- IEEE-EARS (Easy Approach to Requirements Syntax)
- INCOSE (Rules for Writing Requirements) & QVscribe
- Waterfall and Agile (Assembly Methods)

02-ELICIT

LAB-Vision/Scope (Seek to Understand)

Elicitation Techniques:

- Document Analysis (Low Hanging Fruit)
- Interface Analysis (Navigation & Functionality)
- Benchmarking (Actual Data)
- Brainstorming (Every Idea is a Good Idea until it becomes a Bad Idea)
- Prototyping (Minimum Viable Product)
- Reverse Engineering (Begin with the End in Mind)
- Interview (Thinking Questions)
- Workshop (Group Interviews)
- Observation (What do you See?)
- Survey Questionnaire (Paper equals proof)

03-ANALYZE

- What are Models? (Pictures of Language)
- LAB-The Language of Modeling (GIVEN pre WHEN process THEN output-result)
- Types of Models (Context-Structure, Usage, Data Behavior, Process Flow)
- Context-Structure (Vision, Roadmap, Scope WBS)
- Usage (EPIC, UseCase, UserStory, Feature)
- Data Behavior (ERD, JOIN-Denormalization, Star Schema, Dimensional OLAP, Dashboard, Intelligence)
- Data Behavior (Data Dictionary, DataFlow, Data Structure Instance, Data Element Attribute, Data Store)
- Data Behavior (Process Logic, Business Rules)
- Process Flow (Swimlane)

04-DOCUMENT

- Categorization, Organization, Documentation, Integration, Automation
- Making Documents Easy to Read (Fonts & Navigation)
- Document Types (BRD, TRD)
- LAB-Business Requirement Document (Concept of Operation)
- Technical Requirement Document (System Specification)

05-VALIDATE

- Validation thru Triangulation (Prep Drills)
- Traceability (Project Unique Identifier)
- Requirements Baseline (ROM Estimate, Planning Estimate, Definitive Estimate)
- LAB-Estimating Story Points (Complexity and Risk)
- Lessons Learned (Course Wrap-Up)

Assured Solutions

Overview "Seek to Understand"

- What is Big Data?
 Everything, Quantified and Tracked
- Advantages of Big Data
- Ten V's of Big Data
- Understanding Data Risk

What is Big Data?

- Everything (Every aspect of life, work, consumerism, entertainment, and play is now recognized as a source of digital information)
- Quantified (Storing "everything" somewhere, mostly in digital form, often as numbers.)
- Tracked (Quantifying and measuring "everything" continuously)

What is Big Data?

What is Big Data?

	"Big" Data	"Small" Data
VOLUME:	More than a human can comprehend	A lot, but a human brain can handle it
VELOCITY:	Gigantic waves of data every millisecond	Steady stream throughout the data
VARIETY:	Unknown file types	Expected set of file types
VERACITY:	Almost no idea of how data might come in or in what format	Know where changes might happen
STRUCTURE:	Non-Relational	Relational
HARDWARE:	Data Center	File Server
DATABASE:	NoSQL	SQL
PROCESSING:	Spark, Hive, or Pig (on TOP of Hadoop)	SQL
QUERY LANGUAGE:	Python, Java, R, Sequel	SQL
ANALYSIS AREAS:	Clusters (Data Scientist) Data Marts (Analytics)	Data Marts (Analytics)
OPTIMIZATION:	Machine Learning	Manual, human powered
PEOPLE:	Data Scientists, Data Engineers, DBAs, Analysts	Data Engineers, DBAs, Analysts
NOMENCLATURE:	Data Lake	Database, Data Warehouse, Data Mart

Advantages of Big Data

- ➤ Smarter Decisions
- ➤ Better Products
- > Deeper Insights
- ➤ Greater Knowledge
- ➤ Optimal Solutions
- Customer-Centric Products
- ➤ Increased Customer Loyalty

- More Automated Processes,
- More accurate Predictive and Prescriptive Analytics
- Better models of future behaviors and outcomes in Business, Government, Security, Science, Healthcare, Education, and more.

Ten V's of Big Data

V's of Big Data

1 Value: How Useful is the Data? (Hypotheticals, Statistical, Events, Correlations)

2 Volume: Size of the Data? (Distributed, Tables, Records, Exabytes)

3 Velocity: Data Generation Speed? (Real-time, Processes, Streams)

4 Variety: Data Types? (Unstructured, Structured, Multi-factor, Probabilistic, Linked, Dynamic)

5 Veracity: Data Accuracy? (Accountable, Trustworthy, Authentic)

V's of Big Data

6 Variability: Evolving Behavior in Data Source? (Changing Data, Changing Model)

7 Validity: Data Quality, Governance & Master Data Management? (Uniformity, Accuracy, Stewardship, Semantic Consistency)

8 Venue: Multiple Heterogeneous Platforms? (ERP, CRM, Facebook, LinkedIn, Twitter)

9 Vocabulary: Data Structure Description? (Data Dictionary, Data Flow, Data Structure Instance, Data Element Attribute, Data Process, Data Store)

10 Vagueness: Terminology Confusion? (Semantic Community, Taxonomy, Business Rules)

Understanding Data Risks (Testing)

- Data Integration
 Complexity
- Data Security,
 Privacy,
 Governance
- Lack of Meta Data,
 & Schema for Big Data

- Poor Data Quality:
 - Noisy Data (Corrupted)
 - Dirty Data (Inaccurate)
 - Misplaced Data Values
 - Inexact Values
 - Insufficient Data Size
 - Poor Representation In Data Sample
 - Redundant Data

Summary "Train the Trainer"

Summary "Train the Trainer"

- What is Big Data?
 Everything, Quantified and Tracked
- Advantages of Big Data
- Ten V's of Big Data
- Understanding Data Risk

Let's stay in contact with each other...

Let's stay in contact:

Richard Frederick, PMP
214-755-7035 (text or talk)

Rfrederick.pmp@gmail.com

www.meetup.com/tampa-bay-IIBA/
www.linkedin.com/in/rfrederick
meetings.hubspot.com/rfrederick-pmp